UNIVERSITAS LAMPUNG

PENDIDIKAN FISIKA

I Putu Yogi Setia Permana
1613022013

Rabu, 17 Januari 2018

Ilmuan Fisika


Ilmuan Fisika……….


Alam dan hukum alam tersembunyi di balik malam.

Tuhan berkata, biarlah Newton ada! Dan semuanya akan terang benderang.
Isaac Newton, ilmuwan paling besar dan paling berpengaruh yang pernah hidup di dunia, lahir di Woolsthrope, Inggris, tepat pada hari Natal tahun 1642, bertepatan tahun dengan wafatnya Galileo. Seperti halnya Nabi Muhammad, dia lahir sesudah ayahnya meninggal. Di masa bocah dia sudah menunjukkan kecakapan yang nyata di bidang mekanika dan teramat cekatan menggunakan tangannya. Meskipun anak dengan otak cemerlang, di sekolah tampaknya ogah-ogahan dan tidak banyak menarik perhatian. Tatkala menginjak akil baliq, ibunya mengeluarkannya dari sekolah dengan harapan anaknya bisa jadi petani yang baik. Untungnya sang ibu bisa dibujuk, bahwa bakat utamanya tidak terletak di situ. Pada umurnya delapan belas dia masuk Universitas Cambridge. Di sinilah Newton secara kilat menyerap apa yang kemudian terkenal dengan ilmu pengetahuan dan matematika dan dengan cepat pula mulai melakukan penyelidikan sendiri. Antara usia dua puluh satu dan dua puluh tujuh tahun dia sudah meletakkan dasar-dasar teori ilmu pengetahuan yang pada gilirannya kemudian mengubah dunia.

Pertengahan abad ke-17 adalah periode pembenihan ilmu pengetahuan. Penemuan teropong bintang dekat permulaan abad itu telah merombak seluruh pendapat mengenai ilmu perbintangan. Filosof Inggris Francis Bacon dan Filosof Perancis Rene Descartes kedua-duanya berseru kepada ilmuwan seluruh Eropa agar tidak lagi menyandarkan diri pada kekuasaan Aristoteles, melainkan melakukan percobaan dan penelitian atas dasar titik tolak dan keperluan sendiri. Apa yang dikemukakan oleh Bacon dan Descartes, sudah dipraktekkan oleh si hebat Galileo. Penggunaan teropong bintang, penemuan baru untuk penelitian astronomi oleh Newton telah merevolusionerkan penyelidikan bidang itu, dan yang dilakukannya di sektor mekanika telah menghasilkan apa yang kini terkenal dengan sebutan “Hukum gerak Newton” yang pertama.

Ilmuwan besar lain, seperti William Harvey, penemu ihwal peredaran darah dan Johannes Kepler penemu tata gerak planit-planit di seputar matahari, mempersembahkan informasi yang sangat mendasar bagi kalangan cendikiawan. Walau begitu, ilmu pengetahuan murni masih merupakan kegemaran para intelektual, dan masih belum dapat dibuktikan –apabila digunakan dalam teknologi– bahwa ilmu pengetahuan dapat mengubah pola dasar kehidupan manusia sebagaimana diramalkan oleh Francis Bacon.

Walaupun Copernicus dan Galileo sudah menyepak ke pinggir beberapa anggapan ngelantur tentang pengetahuan purba dan telah menyuguhkan pengertian yang lebih genah mengenai alam semesta, namun tak ada satu pokok pikiran pun yang terumuskan dengan seksama yang mampu membelokkan tumpukan pengertian yang gurem dan tak berdasar seraya menyusunnya dalam suatu teori yang memungkinkan berkembangnya ramalan-ramalan yang lebih ilmiah. Tak lain dari Isaac Newton-lah orangnya yang sanggup menyuguhkan kumpulan teori yang terangkum rapi dan meletakkan batu pertama ilmu pengetahuan modern yang kini arusnya jadi anutan orang.

Newton sendiri agak ogah-ogahan menerbitkan dan mengumumkan penemuan-penemuannya. Gagasan dasar sudah disusunnya jauh sebelum tahun 1669 tetapi banyak teori-teorinya baru diketahui publik bertahun-tahun sesudahnya. Penerbitan pertama penemuannya adalah menyangkut penjungkir-balikan anggapan lama tentang hal-ihwal cahaya. Dalam serentetan percobaan yang seksama, Newton menemukan fakta bahwa apa yang lazim disebut orang “cahaya putih” sebenarnya tak lain dari campuran semua warna yang terkandung dalam pelangi. Dan ia pun dengan sangat hati-hati melakukan analisa tentang akibat-akibat hukum pemantulan dan pembiasan cahaya. Berpegang pada hukum ini dia –pada tahun 1668– merancang dan sekaligus membangun teropong refleksi pertama, model teropong yang dipergunakan oleh sebagian terbesar penyelidik bintang-kemintang saat ini. Penemuan ini, berbarengan dengan hasil-hasil yang diperolehnya di bidang percobaan optik yang sudah diperagakannya, dipersembahkan olehnya kepada lembaga peneliti kerajaan Inggris tatkala ia berumur dua puluh sembilan tahun.

Keberhasilan Newton di bidang optik saja mungkin sudah memadai untuk mendudukkan Newton pada urutan daftar buku ini. Sementara itu masih ada penemuan-penemuan yang kurang penting di bidang matematika murni dan di bidang mekanika. Persembahan terbesarnya di bidang matematika adalah penemuannya tentang “kalkulus integral” yang mungkin dipecahkannya tatkala ia berumur dua puluh tiga atau dua puluh empat tahun. Penemuan ini merupakan hasil karya terpenting di bidang matematika modern. Bukan semata bagaikan benih yang daripadanya tumbuh teori matematika modern, tetapi juga perabot tak terelakkan yang tanpa penemuannya itu kemajuan pengetahuan modern yang datang menyusul merupakan hal yang mustahil. Biarpun Newton tidak berbuat sesuatu apapun lagi, penemuan “kalkulus integral”-nya saja sudah memadai untuk menuntunnya ke tangga tinggi dalam daftar urutan buku ini.

Tetapi penemuan-penemuan Newton yang terpenting adalah di bidang mekanika, pengetahuan sekitar bergeraknya sesuatu benda. Galileo merupakan penemu pertama hukum yang melukiskan gerak sesuatu obyek apabila tidak dipengaruhi oleh kekuatan luar. Tentu saja pada dasarnya semua obyek dipengaruhi oleh kekuatan luar dan persoalan yang paling penting dalam ihwal mekanik adalah bagaimana obyek bergerak dalam keadaan itu. Masalah ini dipecahkan oleh Newton dalam hukum geraknya yang kedua dan termasyhur dan dapat dianggap sebagai hukum fisika klasik yang paling utama. Hukum kedua (secara matcmatik dijabarkan dcngan persamaan F = m.a) menetapkan bahwa akselerasi obyek adalah sama dengan gaya netto dibagi massa benda. Terhadap kedua hukum itu Newton menambah hukum ketiganya yang masyhur tentang gerak (menegaskan bahwa pada tiap aksi, misalnya kekuatan fisik, terdapat reaksi yang sama dengan yang bertentangan) serta yang paling termasyhur penemuannya tentang kaidah ilmiah hukum gaya berat universal. Keempat perangkat hukum ini, jika digabungkan, akan membentuk suatu kesatuan sistem yang berlaku buat seluruh makro sistem mekanika, mulai dari pergoyangan pendulum hingga gerak planit-planit dalam orbitnya mengelilingi matahari yang dapat diawasi dan gerak-geriknya dapat diramalkan. Newton tidak cuma menetapkan hukum-hukum mekanika, tetapi dia sendiri juga menggunakan alat kalkulus matematik, dan menunjukkan bahwa rumus-rumus fundamental ini dapat dipergunakan bagi pemecahan problem.
Hukum Newton dapat dan sudah dipergunakan dalam skala luas bidang ilmiah serta bidang perancangan pelbagai peralatan teknis. Dalam masa hidupnya, pemraktekan yang paling dramatis adalah di bidang astronomi. Di sektor ini pun Newton berdiri paling depan. Tahun 1678 Newton menerbitkan buku karyanya yang masyhur Prinsip-prinsip matematika mengenai filsafat alamiah (biasanya diringkas Principia saja). Dalam buku itu Newton mengemukakan teorinya tentang hukum gaya berat dan tentang hukum gerak. Dia menunjukkan bagaimana hukum-hukum itu dapat dipergunakan untuk memperkirakan secara tepat gerakan-gerakan planit-planit seputar sang matahari. Persoalan utama gerak-gerik astronomi adalah bagaimana memperkirakan posisi yang tepat dan gerakan bintang-kemintang serta planit-planit, dengan demikian terpecahkan sepenuhnya oleh Newton hanya dengan sekali sambar. Atas karya-karyanya itu Newton sering dianggap seorang astronom terbesar dari semua yang terbesar.

Apa penilaian kita terhadap arti penting keilmiahan Newton? Apabila kita buka-buka indeks ensiklopedia ilmu pengetahuan, kita akan jumpai ihwal menyangkut Newton beserta hukum-hukum dan penemuan-penemuannya dua atau tiga kali lebih banyak jumlahnya dibanding ihwal ilmuwan yang manapun juga. Kata cendikiawan besar Leibniz yang sama sekali tidak dekat dengan Newton bahkan pernah terlibat dalam suatu pertengkaran sengit: “Dari semua hal yang menyangkut matematika dari mulai dunia berkembang hingga adanya Newton, orang itulah yang memberikan sumbangan terbaik.” Juga pujian diberikan oleh sarjana besar Perancis, Laplace: “Buku Principia Newton berada jauh di atas semua produk manusia genius yang ada di dunia.” Dan Langrange sering menyatakan bahwa Newton adalah genius terbesar yang pernah hidup. Sedangkan Ernst Mach dalam tulisannya di tahun 1901 berkata, “Semua masalah matematika yang sudah terpecahkan sejak masa hidupnya merupakan dasar perkembangan mekanika berdasar atas hukum-hukum Newton.” Ini mungkin merupakan penemuan besar Newton yang paling ruwet: dia menemukan wadah pemisahan antara fakta dan hukum, mampu melukiskan beberapa keajaiban namun tidak banyak menolong untuk melakukan dugaan-dugaan; dia mewariskan kepada kita rangkaian kesatuan hukum-hukum yang mampu dipergunakan buat permasalahan fisika dalam ruang lingkup rahasia yang teramat luas dan mengandung kemungkinan untuk melakukan dugaan-dugaan yang tepat.

Dalam uraian yang begini ringkas, adalah mustahil membeberkan secara terperinci penemuan-penemuan Newton. Akibatnya, banyak karya-karya yang agak kurang tenar terpaksa harus disisihkan biarpun punya makna penting di segi penemuan dalam bidang masalahnya sendiri. Newton juga memberi sumbangsih besar di bidang thermodinamika (penyelidikan tentang panas) dan di bidang akustik (ilmu tentang suara). Dan dia pulalah yang menyuguhkan penjelasan yang jernih bagai kristal prinsip-prinsip fisika tentang “pengawetan” jumlah gerak agar tidak terbuang serta “pengawetan” jumlah gerak sesuatu yang bersudut. Antrian penemuan ini kalau mau bisa diperpanjang lagi: Newtonlah orang yang menemukan dalil binomial dalam matematika yang amat logis dan dapat dipertanggungjawabkan. Mau tambah lagi? Dia juga, tak lain tak bukan, orang pertama yang mengutarakan secara meyakinkan ihwal asal mula bintang-bintang.

Nah, sekarang soalnya begini: taruhlah Newton itu ilmuwan yang paling jempol dari semua ilmuwan yang pernah hidup di bumi. Paling kemilau bagaikan batu zamrud di tengah tumpukan batu kali. Taruhlah begitu. Tetapi, bisa saja ada orang yang mempertanyakan alasan apa menempatkan Newton di atas pentolan politikus raksasa seperti Alexander Yang Agung atau George Wasington, serta disebut duluan ketimbang tokoh-tokoh agama besar seperti Nabi Isa atau Budha Gautama. Kenapa mesti begitu?

Pertimbangan saya begini. Memang betul perubahan-perubahan politik itu penting kalau tidak teramat penting. Walau begitu, bagaimanapun juga pada umumnya manusia sebagaian terbesar hidup nyaris tak banyak beda antara mereka di jaman lima ratus tahun sesudah Alexander wafat dengan mereka di jaman lima ratus sebelum Alexander muncul dari rahim ibunya. Dengan kata lain, cara manusia hidup di tahun 1500 sesudah Masehi boleh dibilang serupa dengan cara hidup buyut bin buyut bin buyut mereka di tahun 1500 sebelum Masehi. Sekarang, tengoklah dari sudut perkembangan ilmu pengetahuan. Dalam lima abad terakhir, berkat penemuan-penemuan ilmiah modern, cara hidup manusia sehari-hari sudah mengalami revolusi besar. Cara berbusana beda, cara makan beda, cara kerja dan ragamnya beda. Bahkan, cara hidup santai berleha-leha pun sama sekali tidak mirip dengan apa yang diperbuat orang jaman tahun 1500 sesudah Masehi. Penemuan ilmiah bukan saja sudah merevolusionerkan teknologi dan ekonomi, tetapi juga sudah mengubah total segi politik, pemikiran keagamaan, seni dan falsafah. Sangat langkalah aspek kehidupan manusia yang tetap “jongkok di tempat” tak beringsut sejengkal pun dengan adanya revolusi ilmiah. Alasan ini –sekali lagi alasan ini– yang jadi sebab mengapa begitu banyak ilmuwan dan penemu gagasan baru tercantum di dalam daftar buku ini. Newton bukan semata yang paling cerdas otak diantara barisan cerdas otak, tetapi sekaligus dia tokoh yang paling berpengaruh di dalam perkembangan teori ilmu. Itu sebabnya dia peroleh kehormatan untuk didudukkan dalam urutan hampir teratas dari sekian banyak manusia yang paling berpengaruh dalam sejarah manusia. Newton menghembuskan nafas penghabisan tahun 1727, dikebumikan di Westminster Abbey, ilmuwan pertama yang memperoleh penghormatan macam itu.

<span style=”font-weight:bold;”>GALILEO GALILEI 1564-1642</span>
Ilmuwan Itali besar ini mungkin lebih bertanggung jawab terhadap perkembangan metode ilmiah dari siapa pun juga. Galileo lahir di Pisa, tahun 1564. Selagi muda belajar di Universitas Pisa tetapi mandek karena urusan keuangan. Meski begitu tahun 1589 dia mampu dapat posisi pengajar di universitas itu. Beberapa tahun kemudian dia bergabung dengan Universitas Padua dan menetap di sana hingga tahun 1610. Dalam masa inilah dia menciptakan tumpukan penemuan-penemuan ilmiah.
Sumbangan penting pertamanya di bidang mekanika. Aristoteles mengajarkan, benda yang lebih berat jatuh lebih cepat ketimbang benda yang lebih enteng, dan bergenerasi-generasi kaum cerdik pandai menelan pendapat filosof Yunani yang besar pengaruh ini. Tetapi, Galileo memutuskan mencoba dulu benar-tidaknya, dan lewat serentetan eksperimen dia berkesimpulan bahwa Aristoteles keliru. Yang benar adalah, baik benda berat maupun enteng jatuh pada kecepatan yang sama kecuali sampai batas mereka berkurang kecepatannya akibat pergeseran udara. (Kebetulan, kebiasaan Galileo melakukan percobaan melempar benda dari menara Pisa tampaknya tanpa sadar).
Mengetahui hal ini, Galileo mengambil langkah-langkah lebih lanjut. Dengan hati-hati dia mengukur jarak jatuhnya benda pada saat yang ditentukan dan mendapat bukti bahwa jarak yang dilalui oleh benda yang jatuh adalah berbanding seimbang dengan jumlah detik kwadrat jatuhnya benda. Penemuan ini (yang berarti penyeragaman percepatan) memiliki arti penting tersendiri. Bahkan lebih penting lagi Galileo berkemampuan menghimpun hasil penemuannya dengan formula matematik. Penggunaan yang luas formula matematik dan metode matematik merupakan sifat penting dari ilmu pengetahuan modern.

Sumbangan besar Galileo lainnya ialah penemuannya mengenai hukum kelembaman. Sebelumnya, orang percaya bahwa benda bergerak dengan sendirinya cenderung menjadi makin pelan dan sepenuhnya berhenti kalau saja tidak ada tenaga yang menambah kekuatan agar terus bergerak. Tetapi percobaan-percobaan Galileo membuktikan bahwa anggapan itu keliru. Bilamana kekuatan melambat seperti misalnya pergeseran, dapat dihilangkan, benda bergerak cenderung tetap bergerak tanpa batas. Ini merupakan prinsip penting yang telah berulang kali ditegaskan oleh Newton dan digabungkan dengan sistemnya sendiri sebagai hukum gerak pertama salah satu prinsip vital dalam ilmu pengetahuan.

Penemuan Galileo yang paling masyhur adalah di bidang astronomi. Teori perbintangan di awal tahun 1600-an berada dalam situasi yang tak menentu. Terjadi selisih pendapat antara penganut teori Copernicus yang matahari-sentris dan penganut teori yang lebih lama, yang bumi-sentris. Sekitar tahun 1609 Galileo menyatakan kepercayaannya bahwa Copernicus berada di pihak yang benar, tetapi waktu itu dia tidak tahu cara membuktikannya. Di tahun 1609, Galileo dengar kabar bahwa teleskop diketemukan orang di Negeri Belanda. Meskipun Galileo hanya mendengar samar-samar saja mengenai peralatan itu, tetapi berkat kegeniusannya dia mampu menciptakan sendiri teleskop. Dengan alat baru ini dia mengalihkan perhatiannya ke langit dan hanya dalam setahun dia sudah berhasil membikin serentetan penemuan besar.

Dilihatnya bulan itu tidaklah rata melainkan benjol-benjol, penuh kawah dan gunung-gunung. Benda-benda langit, kesimpulannya, tidaklah rata serta licin melainkan tak beraturan seperti halnya wajah bumi. Ditatapnya Bima Sakti dan tampak olehnya bahwa dia itu bukanlah semacam kabut samasekali melainkan terdiri dari sejumlah besar bintang-bintang yang dengan mata telanjang memang seperti teraduk dan membaur satu sama lain.

Kemudian diincarnya planit-planit dan tampaklah olehnya Saturnus bagaikan dilingkari gelang. Teleskopnya melirik Yupiter dan tahulah dia ada empat buah bulan berputar-putar mengelilingi planit itu. Di sini terang-benderanglah baginya bahwa benda-benda angkasa dapat berputar mengitari sebuah planit selain bumi. Keasyikannya menjadi-jadi: ditatapnya sang surya dan tampak olehnya ada bintik-bintik dalam wajahnya. Memang ada orang lain sebelumnya yang juga melihat bintik-bintik ini, tetapi Galileo menerbitkan hasil penemuannya dengan cara yang lebih efektif dan menempatkan masalah bintik-bintik matahari itu menjadi perhatian dunia ilmu pengetahuan. Selanjutnya, penelitiannya beralih ke planit Venus yang memiliki jangka serupa benar dengan jangka bulan. Ini merupakan bagian dari bukti penting yang mengukuhkan teori Copernicus bahwa bumi dan semua planit lainnya berputar mengelilingi matahari.
Ilustrasi dari hukum daya pengungkit Galileo dipetik dari buku Galileo ‘Perbincangan Matematik dan Peragaan’

Penemuan teleskop dan serentetan penemuan ini melempar Galileo ke atas tangga kemasyhuran. Sementara itu, dukungannya terhadap teori Copernicus menyebabkan dia berhadapan dengan kalangan gereja yang menentangnya habis-habisan. Pertentangan gereja ini mencapai puncaknya di tahun 1616: dia diperintahkan menahan diri dari menyebarkan hipotesa Copernicus. Galileo merasa tergencet dengan pembatasan ini selama bertahun-tahun. Baru sesudah Paus meninggal tahun 1623, dia digantikan oleh orang yang mengagumi Galileo. Tahun berikutnya, Paus baru ini –Urban VIII– memberi pertanda walau samar-samar bahwa larangan buat Galileo tidak lagi dipaksakan.
Enam tahun berikutnya Galileo menghabiskan waktu menyusun karya ilmiahnya yang penting Dialog Tentang Dua Sistem Penting Dunia. Buku ini merupakan peragaan hebat hal-hal yang menyangkut dukungan terhadap teori Copernicus dan buku ini diterbitkan tahun 1632 dengan ijin sensor khusus dari gereja. Meskipun begitu, penguasa-penguasa gereja menanggapi dengan sikap berang tatkala buku terbit dan Galileo langsung diseret ke muka Pengadilan Agama di Roma dengan tuduhan melanggar larangan tahun 1616.

Tetapi jelas, banyak pembesar-pembesar gereja tidak senang dengan keputusan menghukum seorang sarjana kenamaan. Bahkan dibawah hukum gereja saat itu, kasus Galileo dipertanyakan dan dia cuma dijatuhi hukuman enteng. Galileo tidak dijebloskan ke dalam bui tetapi sekedar kena tahanan rumah di rumahnya sendiri yang cukup enak di sebuah villa di Arcetri. Teorinya dia tidak boleh terima tamu, tetapi nyatanya aturan itu tidak dilaksanakan sebagaimana mestinya. Hukuman lain terhadapnya hanyalah suatu permintaarn agar dia secara terbuka mencabut kembali pendapatnya bahwa bumi berputar mengelilingi matahari. Ilmuwan berumur 69 tahun ini melaksanakannya di depan pengadilan terbuka. (Ada ceritera masyhur yang tidak tentu benarnya bahwa sehabis Galileo menarik lagi pendapatnya dia menunduk ke bumi dan berbisik pelan, “Tengok, dia masih terus bergerak!”). Di kota Arcetri dia meneruskan kerja tulisnya di bidang mekanika. Galileo meninggal tahun 1642.
Sumbangan besar Galileo terhadap kemajuan ilmu pengetahuan sudah lama dikenal. Arti penting peranannya terletak pada penemuan-penemuan ilmiah seperti hukum kelembaman, penemuan teleskopnya, pengamatan bidang astronominya dan kegeniusannya membuktikan hipotesa Copernicus. Dan yang lebih penting adalah peranannya dalam hal pengembangan metodologi ilmu pengetahuan. Umumnya para filosof alam mendasarkan pendapatnya pada pikiran-pikiran Aristoteles serta membuat penyelidikan secara kualitatif dan fenomena yang terkategori. Sebaliknya, Galileo menetapkan fenomena dan melakukan pengamatan atas dasar kuantitatif. Penekanan yang cermat terhadap perhitungan secara kuantitatif sejak itu menjadi dasar penyelidikan ilmu pengetahuan di masa-masa berikutnya.

Galileo mungkin lebih punya tanggung jawab daripada orang mana pun untuk penyelidikan ilmiah dengan sikap empiris. Dialah, dan bukannya yang lain, yang pertama kali menekankan arti penting peragaan percobaan-percobaan, dia menolak pendapat bahwa masalah-masalah ilmiah dapat diputuskan bersama dengan kekuasaan, apakah kekuasaan itu namanya Gereja atau kaidah dalil Aristoteles. Dia juga menolak keras bersandar pada skema-skema yang menggunakan alasan ruwet dan bukannya bersandar pada dasar percobaan yang mantap. Cerdik cendikiawan abad tengah memperbincangkan bertele-tele apa yang harus terjadi dan mengapa sesuatu hal terjadi, tetapi Galileo bersikeras pada arti penting melakukan percobaan untuk memastikan apa sesungguhnya yang terjadi. Pandangan ilmiahnya jelas gamblang tidak berbau mistik, dan dalam hubungan ini dia bahkan lebih modern ketimbang para penerusnya, seperti misalnya Newton.

Galileo, dapat dianggap orang yang taat beragama. Lepas dari hukuman yang dijatuhkan terhadap dirinya dan pengakuannya, dia tidak menolak baik agama maupun gereja. Yang ditolaknya hanyalah percobaan pembesar-pembesar gereja untuk menekan usaha penyelidikan ilmu pengetahuannya. Generasi berikutnya amat beralasan mengagumi Gahleo sebagai lambang pemberontak terhadap dogma dan terhadap kekuasaan otoriter yang mencoba membelenggu kemerdekaan berfikir. Arti pentingnya yang lebih menonjol lagi adalah peranan yang dimainkannya dalam hal meletakkan dasar-dasar metode ilmu pengetahuan modern.

<span style=”font-weight:bold;”>ALBERT EINSTEIN 1879-1955</span>
Albert Einstein, tak salah lagi, seorang ilmuwan terhebat abad ke-20. Cendekiawan tak ada tandingannya sepanjang jaman. Termasuk karena teori “relativitas”-nya. Sebenarnya teori ini merupakan dua teori yang bertautan satu sama lain: teori khusus “relativitas” yang dirumuskannya tahun 1905 dan teori umum “relativitas” yang dirumuskannya tahun 1915, lebih terkenal dengan hukum gaya berat Einstein. Kedua teori ini teramat rumitnya, karena itu bukan tempatnya di sini menjelaskan sebagaimana adanya, namun uraian ala kadarnya tentang soal relativitas khusus ada disinggung sedikit. Pepatah bilang, “semuanya adalah relatif.” Teori Einstein bukanlah sekedar mengunyah-ngunyah ungkapan yang nyaris menjemukan itu. Yang dimaksudkannya adalah suatu pendapat matematik yang pasti tentang kaidah-kaidah ilmiah yang sebetulnya relatif. Hakikatnya, penilaian subyektif terhadap waktu dan ruang tergantung pada si penganut. Sebelum Einstein, umumnya orang senantiasa percaya bahwa dibalik kesan subyektif terdapat ruang dan waktu yang absolut yang bisa diukur dengan peralatan secara obyektif. Teori Einstein menjungkir-balikkan secara revolusioner pemikiran ilmiah dengan cara menolak adanya sang waktu yang absolut. Contoh berikut ini dapat menggambarkan betapa radikal teorinya, betapa tegasnya dia merombak pendapat kita tentang ruang dan waktu.

Bayangkanlah sebuah pesawat ruang angkasa –sebutlah namanya X–meluncur laju menjauhi bumi dengan kecepatan 100.000 kilometer per detik. Kecepatan diukur oleh pengamat, baik yang berada di pesawat ruang angkasa X maupun di bumi, dan pengukuran mereka bersamaan. Sementara itu, sebuah pesawat ruang angkasa lain yang bernama Y meluncur laju pada arah yang sama dengan pesawat ruang angkasa X tetapi dengan kecepatan yang berlebih. Apabila pengamat di bumi mengukur kecepatan pesawat ruang angkasa Y, mereka mengetahui bahwa pesawat itu melaju menjauhi bumi pada kecepatan 180.000 kilometer per detik. Pengamat di atas pesawat ruang angkasa Y akan berkesimpulan serupa.

Nah, karena kedua pesawat ruang angkasa itu melaju pada arah yang bersamaan, akan tampak bahwa beda kecepatan antara kedua pesawat itu 80.000 kilometer per detik dan pesawat yang lebih cepat tak bisa tidak akan bergerak menjauhi pesawat yang lebih lambat pada kadar kecepatan ini.
Tetapi, teori Einstein memperhitungkan, jika pengamatan dilakukan dari kedua pesawat ruang angkasa, mereka akan bersepakat bahwa jarak antara keduanya bertambah pada tingkat ukuran 100.000 kilometer per detik, bukannya 80.000 kilometer per detik.
Kelihatannya hal ini mustahil. Kelihatannya seperti olok-olok. Pembaca menduga seakan ada bau-bau tipu. Menduga jangan-jangan ada perincian yang disembunyikan. Padahal, sama sekali tidak! Hasil ini tidak ada hubungannya dengan tenaga yang digunakan untuk mendorong mereka.
Tak ada keliru pengamatan. Walhasil, tak ada apa pun yang kurang, alat rusak atau kabel melintir. Mulus, polos, tak mengecoh. Menurut Einstein, hasil kesimpulan yang tersebut di atas tadi semata-mata sebagai akibat dari sifat dasar alamiah ruang dan waktu yang sudah bisa diperhitungkan lewat rumus ihwal komposisi kecepatannya.

Tampaknya merupakan kedahsyatan teoritis, dan memang bertahun-tahun orang menjauhi “teori relativitas” bagaikan menjauhi hipotesa “menara gading,” seolah-olah teori itu tak punya arti penting samasekali. Tak seorang pun –tentu saja tidak– membuat kekeliruan hingga tahun 1945 tatkala bom atom menyapu Hiroshima dan Nagasaki. Salah satu kesimpulan “teori relativitas” Einstein adalah benda dan energi berada dalam arti yang berimbangan dan hubungan antara keduanya dirumuskan sebagai E = mc2. E menunjukkan energi dan m menunjukkan massa benda, sedangkan c merupakan kecepatan cahaya. Nah, karena c adalah sama dengan 180.000 kilometer per detik (artinya merupakan jumlah angka amat besar) dengan sendirinya c2 (yang artinya c x c) karuan saja tak tepermanai besar jumlahnya. Dengan demikian berarti, meskipun pengubahan sebagian kecil dari benda mampu mengeluarkan jumlah energi luar biasa besarnya.

Orang karuan saja tak bakal bisa membikin sebuah bom atom atau pusat tenaga nuklir semata-mata berpegang pada rumus E = mc2. Haruslah dikaji pula dalam-dalam, banyak orang memainkan peranan penting dalam proses pembangkitan energi atom. Namun, bagaimanapun juga, sumbangan pikiran Einstein tidaklah meragukan lagi. Tak ada yang cekcok dalam soal ini. Lebih jauh dari itu, tak lain dari Einstein orangnya yang menulis surat kepada Presiden Roosevelt di tahun 1939, menunjukkan terbukanya kemungkinan membikin senjata atom dan sekaligus menekankan arti penting bagi Amerika Serikat selekas-lekasnya membikin senjata itu sebelum didahului Jerman. Gagasan itulah kemudian mewujudkan “Proyek Manhattan” yang akhirnya bisa menciptakan bom atom pertama.

“Teori relativitas khusus” mengundang beda pendapat yang hangat, tetapi dalam satu segi semua sepakat, teori itu merupakan pemikiran yang paling meragukan yang pernah dirumuskan manusia. Tetapi, tiap orang ternyata terkecoh karena “teori relativitas umum” Einstein merupakan titik tolak pikiran lain bahwa pengaruh gaya berat bukanlah lantaran kekuatan fisik dalam makna yang biasa, melainkan akibat dari bentuk lengkung angkasa luar sendiri, suatu pendapat yang amat mencengangkan!

Bagaimana bisa orang mengukur bentuk lengkung ruang angkasa?
Einstein bukan sekedar mengembangkan secara teoritis, melainkan dituangkannya ke dalam rumusan matematik yang jernih dan jelas sehingga orang bisa melakukan ramalan yang nyata dan hipotesanya bisa diuji. Pengamatan berikutnya –dan ini yang paling cemerlang karena dilakukan tatkala gerhana matahari total– telah berulang kali diyakini kebenarannya karena bersamaan benar dengan apa yang dikatakan Einstein.

Teori umum tentang relativitas berdiri terpisah dalam beberapa hal dengan semua hukum-hukum ilmiah. Pertama, Einstein merumuskan teorinya tidak atas dasar percobaan-percobaan, melainkan atas dasar-dasar kehalusan simetri dan matematik. Pendeknya berpijak diatas dasar rasional seperti lazimnya kebiasaan para filosof Yunani dan para cendekiawan abad tengah perbuat. Ini berarti, Einstein berbeda cara dengan metode ilmuwan modern yang berpandangan empiris. Tetapi, bedanya ada juga: pemikir Yunani dalam hal pendambaan keindahan dan simetri tak pernah berhasil mengelola dan menemukan teori yang mekanik yang mampu bertahan menghadapi percobaan pengujian yang rumit-rumit, sedangkan Einstein dapat bertahan dengan sukses terhadap tiap-tiap percobaan. Salah satu hasil dari pendekatan Einstein adalah bahwa teori umum relativitasnya dianggap suatu yang amat indah, bergaya, teguh dan secara intelektual memuaskan semua teori ilmiah.

Teori relativitas umum juga dalam beberapa hal berdiri secara terpisah. Kebanyakan hukum-hukum ilmiah lain hanya kira-kira saja berlaku. Ada yang kena dalam banyak hal, tetapi tidak semua. Sedangkan mengenai teori umum relativitas, sepanjang pengetahuan, sepenuhnya diterima tanpa kecuali. Tak ada keadaan yang tak diketahui, baik dalam kaitan teoritis atau percobaan praktek yang menunjukkan bahwa ramalan-ramalan teori umum relativitas hanya berlaku secara kira-kira. Bisa saja percobaan-percobaan di masa depan merusak nama baik hasil sempurna yang pernah dicapai oleh sesuatu teori, tetapi sepanjang menyangkut teori umum relativitas, jelas tetap merupakan pendekatan yang paling diandalkan bagi setiap ilmuwan dalam usahanya menuju kebenaran terakhir.
Meskipun Einstein teramat terkenal dengan “teori relativitas”-nya, keberhasilan karyanya di bidang ilmiah lain juga membuatnya tersohor selaku ilmuwan dalam setiap segi. Nyatanya, Einstein peroleh Hadiah Nobel untuk bidang fisika terutama lantaran buah pikiran tertulisnya membeberkan efek-efek foto elektrik, sebuah fenomena penting yang sebelumnya merupakan teka-teki para cerdik pandai. Dalam karya tulisan ilmiah itu Einstein membuktikan eksistensi photon, atau partikel cahaya.
Anggapan lama lewat percobaan yang tersendat-sendat mengatakan bahwa cahaya itu terdiri dari gelombang elektro magnit, dan gelombang serta partikel merupakan konsep yang berlawanan. Sedangkan hipotesa Einstein menunjukkan suatu perbedaan yang radikal dan amat bertentangan dengan teori-teori klasik. Bukan saja hukum foto elektriknya terbukti punya arti penting dalam penggunaan, tetapi hipotesanya tentang photon punya pengaruh besar dalam perkembangan teori kuantum (hipotesa bahwa dalam radiasi, energi elektron dikeluarkan tidak kontinyu melainkan dalam jumlah tertentu) yang saat ini merupakan bagian tak terpisahkan dari teori itu.

Dalam hal menilai arti penting Einstein, suatu perbandingan dengan Isaac Newton merupakan hal menyolok. Teori Newton pada dasarnya mudah dipahami, dan kegeniusannya sudah tampak pada awal mula perkembangan. Sedangkan “teori relativitas” Einstein teramat sulit dipahami biarpun lewat penjelasan yang cermat dan hati-hati. Lebih-Lebih rumit lagi jika mengikhtisarkan aslinya! Tatkala beberapa gagasan Newton mengalami benturan dengan gagasan ilmiah pada jamannya, teorinya tak pernah tampak luntur atau goyah dengan pendiriannya. Sebaliknya, “teori relativitas” penuh dengan hal yang saling bertentangan. Ini merupakan bagian dari kegeniusan Einstein bahwa pada saat permulaan, ketika gagasannya masih merupakan hipotesa yang belum diuji yang dikemukakannya selaku orang muda belasan tahun yang samasekali tidak dikenal, dia tak pernah membiarkan kontradiksi yang nyata-nyata ada ini dan mencampakkan teorinya. Sebaliknya malahan dia dengan sangat cermat dan hati-hati merenungkan terus hingga ia mampu menunjukkan bahwa kontradiksi ini hanya pada lahirnya saja sedangkan sebenarnya tiap masalah selalu tersedia untuk memecahkan kontradiksi itu dengan cara yang halus namun cerdik dan tegas.

Kini, kita anggap teori Einstein itu pada dasarnya lebih “correct” ketimbang teori Newton. Jika begitu halnya kenapa Einstein ditempatkan Lebih bawah dalam daftar tingkat urutan buku ini?
Alasannya tersedia. Pertama, teori-teori Newtonlah yang merupakan peletak dasar dan batu pertama ilmu pengetahuan modern dan teknologi. Tanpa karya Newton, kita tidak akan menyaksikan teknologi modern sekarang ini. Bukannya Einstein.

Ada lagi faktor yang menyebabkan mengapa kedudukan Einstein dalam urutan seperti yang pembaca saksikan. Dalam banyak hal, perkembangan suatu ide melibatkan sumbangan pikiran banyak orang. Ini jelas sekali misalnya dalam ihwal sejarah sosialisme, atau dalam pengembangan teori listrik dan magnit. Meskipun Einstein tidak 100% merumuskan “teori relativitas” dengan otaknya sendiri, yang sudah pasti sebagian terbesar memang sahamnya. Adalah adil mengatakan bahwa ditilik dari perbandingan arti penting ide-ide lain, teori-teori relativitas terutama berasal dari kreasi seorang, si genius dan si jempolan, Einstein.

Einstein mendiskusikan teori-teorinya.
Einstein lahir tahun 1879, di kota Ulm, Jerman. Dia memasuki perguruan tinggi di Swiss dan menjadi warganegara Swiss tahun 1900. Di tahun 1905 dia mendapat gelar Doktor dari Universitas Zurich tetapi (anehnya) tak bisa meraih posisi akademis pada saat itu. Di tahun itu pula dia menerbitkan kertas kerja perihal “relatif khusus,” perihal efek foto elektrik, dan tentang teori gerak Brown. Hanya dalam beberapa tahun saja kertas-kertas kerja ini, terutama yang menyangkut relativitas, telah mengangkatnya menjadi salah seorang ilmuwan paling cemerlang dan paling orisinal di dunia. Teori-teorinya sangat kontroversial. Tak ada ilmuwan dunia kecuali Darwin yang pernah menciptakan situasi kontroversial seperti Einstein. Akibat itu, di tahun 1913 dia diangkat sebagai mahaguru di Universitas Berlin dan pada saat berbarengan menjadi Direktur Lembaga Fisika “Kaisar Wilhelm” serta menjadi anggota Akademi Ilmu Pengetahuan Prusia. Jabatan-jabatan ini tidak mengikatnya untuk sebebas-bebasnya mengabdikan sepenuh waktu melakukan penyelidikan-penyelidikan, kapan saja dia suka.

Pemerintah Jerman tidak menyesal menyiram Einstein dengan sebarisan panjang kedudukan yang istimewa itu karena persis dua tahun kemudian Einstein berhasil merumuskan “teori umum relativitas,” dan tahun 1921 dia memperoleh Hadiah Nobel. Sepanjang paruhan terakhir dari kehidupannya, Einstein menjadi buah bibir dunia, dan hampir dapat dipastikan dialah ilmuwan yang masyhur yang pernah lahir ke dunia.

Karena Einstein seorang Yahudi, kehidupannya di Jerman menjadi tak aman begitu Hitler naik berkuasa. Di tahun 1933 dia hijrah ke Princeton, New Jersey, Amerika Serikat, bekerja di Lembaga Studi Lanjutan Tinggi dan di tahun 1940 menjadi warga negara Amerika Serikat. Perkawinan pertama Einstein berujung dengan perceraian, hanya perkawinannya yang kedua tampaknya baru bahagia. Punya dua anak, keduanya laki-laki. Einstein meninggal dunia tahun 1955 di Princeton.
Einstein senantiasa tertarik pada ihwal kemanusiaan dunia di sekitarnya dan sering mengemukakan pandangan-pandangan politiknya. Dia merupakan pelawan teguh terhadap sistem politik tirani, seorang pendukung gigih gerakan Pacifis, dan seorang penyokong teguh Zionisme. Dalam hal berpakaian dan kebiasaan-kebiasaan sosial dia tampak seorang yang individualistis. Suka humor, sederhana dan ada bakat gesek biola. Tulisan pada nisan makam Newton yang berbunyi: “Bersukarialah para arwah karena hiasan yang ditinggalkannya bagi kemanusiaan!” sebetulnya lebih kena untuk Einstein.

<span style=”font-weight:bold;”>JAMES WATT 1736-1819</span>
James Watt, orang Skotlandia yang sering dihubungkan dengan penemu mesin uap, adalah tokoh kunci Revolusi Industri.

Sebenarnya, Watt bukanlah orang pertama yang membikin mesin uap. Rancangan serupa disusun pula oleh Hero dari Iskandariah pada awal tahun Masehi. Di tahun 1686 Thomas Savery membikin paten sebuah mesin uap yang digunakan untuk memompa air, dan di tahun 1712, seorang Inggris Thomas Newcomen, membikin pula paten barang serupa dengan versi yang lebih sempurna, namun mesin ciptaan Newcomen masih bermutu rendah dan kurang efisien, hanya bisa digunakan untuk pompa air dari tambang batubara.

Watt menjadi tertarik dengan ihwal mesin uap di tahun 1764 tatkala dia sedang membetulkan mesin ciptaan Newcomen. Meskipun Watt cuma peroleh pendidikan setahun sebagai tukang pembuat perkakas, tetapi dia punya bakat pencipta yang besar. Penyempurnaan-penyempurnaan yang dilakukannya terhadap mesin bikinan Newcomen begitu penting, sehingga layaklah menganggap sesungguhnya Wattlah pencipta pertama mesin uap yang praktis.
Keberhasilan Watt pertama yang dipatenkannya di tahun 1769 adalah penambahan ruang terpisah yang diperkokoh. Dia juga membikin isolasi pemisah untuk mencegah menghilangnya panas pada silinder uap, dan di tahun 1782 dia menemukan mesin ganda. Dengan beberapa perbaikan kecil, pembaruan ini menghasilan peningkatan efisiensi mesin uap dengan empat kali lipat atau lebih. Dalam praktek, peningkatan efisiensi ini memang merupakan hasil dari suatu kecerdasan namun tidaklah begitu merupakan peralatan yang bermanfaat dan bukan pula punya kegunaan luar biasa ditilik dari sudut industri.

Watt juga menemukan (di tahun 1781) seperangkat gerigi untuk mengubah gerak balik mesin sehingga menjadi gerak berputar. Alat ini meningkatkan secara besar-besaran penggunaan mesin uap. Watt juga berhasil menciptakan pengontrol gaya gerak melingkar otomatis (tahun 1788), yang menyebabkan kecepatan mesin dapat secara otomatis diawasi. Juga menciptakan alat pengukur bertekanan (tahun 1790), alat penghitung kecepatan, alat petunjuk dan alat pengontrol uap sebagai tambahan perbaikan lain-lain peralatan.

Watt sendiri tidak punya bakat bisnis. Tetapi, di tahun 1775 dia melakukan persekutuan dengan Matthew Boulton, seorang insinyur, dan seorang pengusaha yang cekatan. Selama dua puluh lima tahun sesudah itu, perusahaan Watt dan Boulton memproduksi sejumlah besar mesin uap dan keduanya menjadi kaya raya.

Mesin uap bekerja ganda penemuan Watt tahun 1769
Memang sulit melebih-lebihkan arti penting mesin uap. Sebab, memang banyak penemuan-penemuan lain yang memegang peranan penting mendorong berkembangnya Revolusi Industri. Misalnya, perkembangan dunia tambang, metalurgi, dan macam-macam peralatan mesin. Sekoci yang meluncur bolak-balik dalam mesin tenun (penemuan John Kay tahun 1733), atau alat pintal (penemuan James Hargreaves tahun 1764) semuanya terjadi mendahului kreasi Watt. Sebagian terbesar dari penemuan-penemuan itu hanyalah merupakan penyempurnaan yang kurang berarti dan tak satu pun punya arti vital dalam kaitan dengan bermulanya Revolusi Industri. Lain halnya dengan penemuan mesin uap yang memainkan peranan penting dalam Revolusi Industri, yang tampaknya keadaan akan mengalami bentuk lain. Sebelumnya, meskipun tenaga uap digunakan untuk kincir angin dan putaran air, sumber pokok tenaga mesin terletak pada tenaga manusia. Faktor ini amat membatasi kapasitas produksi industri. Berkat penemuan mesin uap, keterbatasan ini tersingkirkan. Sejumlah besar energi kini dapat disalurkan untuk hal-hal yang produktif yang menanjak dengan teramat derasnya. Embargo minyak tahun 1973 membuat kita sadar betapa sengsaranya jika bahan energi berkurang dan mampu melumpuhkan industri. Pengalaman ini, pada tingkat tertentu, mendorong kita membayangkan arti penting Revolusi Industri berkat penemuan James Watt.

Di samping manfaat tenaga untuk pabrik, mesin uap juga punya guna besar di bidang-bidang lain. Di tahun 1783, Marquis de Jouffroy di Abbans berhasil menggunakan mesin uap untuk penggerak kapal. Di tahun 1804, Richard Trevithick menciptakan lokomotif uap pertama. Tak satu pun dari model-model pemula itu berhasil secara komersial. Dalam tempo beberapa puluh tahun, barulah baik kapal maupun kereta api menghasilkan revolusi baik di bidang pengangkutan darat maupun laut.
Revolusi Industri berlangsung hampir berbarengan dengan Revolusi Amerika maupun Perancis. Meskipun waktu itu tampaknya sepele, kini tampak jelas betapa Revolusi Industri itu seakan digariskan mempunyai makna jauh lebih penting untuk peri kehidupan manusia ketimbang arti penting revolusi politik. James Watt, oleh sebab itu tergolong salah seorang yang punya pengaruh penting dalam sejarah.

MICHAEL FARADAY 1791-1867
Abad ini abad listrik. Memang, ada yang bilang abad ruang angkasa, ada yang bilang abad atom, tetapi kesemuanya ini –betapapun pentingya– relatif sedikit pengaruhnya kepada kehidupan sehari-hari. Lain halnya dengan listrik. Tak terbayangkan rasanya hidup bisa jalan baik tanpa listrik. Tak habis-habisnya dari pagi hingga pagi kita mengambil manfaat dari listrik. Fakta menunjukkan, tak ada jenis teknologi yang begitu luas tersebar ketimbang penggunaan listrik.
Banyak tokoh penyumbang dalam hal kelistrikan: Charles Augustine de Coulomb, Count Alessandro Volta, Hans Christian Oersted dan Andre Marie Ampere. Mereka-mereka ini diantara jago-jago terbaik di bidang listrik. Namun, puncak bin puncak dari semuanya adalah ilmuwan Inggris Michael Faraday dan James Clerk Maxwell. Walaupun kerja kedua orang itu berkaitan satu sama lain dan saling lengkap-melengkapi, tetapi mereka bukan berada dalam satu tim, masing-masing mencipta secara pribadi, karena itu kedua-duanya dapat tempat terhormat di dalam daftar urutan buku ini.
Michael Faraday lahir tahun 1791 di Newington, Inggris. Berasal-usul dari keluarga tak berpunya dan umumnya belajar sendiri. Di usia empat belas tahun dia magang jadi tukang jilid dan jual buku, dan kesempatan inilah yang digunakannya banyak baca buku seperti orang kesetanan. Tatkala umurnya menginjak dua puluh tahun, dia mengunjungi ceramah-ceramah yang diberikan oleh ilmuwan Inggris kenamaan Sir Humphry Davy. Faraday terpesona dan ternganga-nganga. Ditulisnya surat kepada Davy dan pendek ceritera untung baik diterima sebagai asistennya. Hanya dalam tempo beberapa tahun, Faraday sudah bisa membikin penemuan-penemuan baru atas hasil kreasinya sendiri. Meski dia tidak punya latar belakang yang memadai di bidang matematika, selaku ahli ilmu alam dia tak terlawankan.

Penemuan Faraday pertama yang penting di bidang listrik terjadi tahun 1821. Dua tahun sebelumnya Oersted telah menemukan bahwa jarum magnit kompas biasa dapat beringsut jika arus listrik dialirkan dalam kawat yang tidak berjauhan. Ini membikin Faraday berkesimpulan, jika magnit diketatkan, yang bergerak justru kawatnya. Bekerja atas dasar dugaan ini, dia berhasil membuat suatu skema yang jelas dimana kawat akan terus-menerus berputar berdekatan dengan magnit sepanjang arus listrik dialirkan ke kawat. Sesungguhnya dalam hal ini Faraday sudah menemukan motor listrik pertama, suatu skema pertama penggunaan arus listrik untuk membuat sesuatu benda bergerak. Betapapun primitifnya, penemuan Faraday ini merupakan “nenek moyang” dari semua motor listrik yang digunakan dunia sekarang ini.

Ini merupakan pembuka jalan yang luar biasa. Tetapi, faedah kegunaan praktisnya terbatas, sepanjang tidak ada metode untuk menggerakkan arus listrik selain dari baterei kimiawi sederhana pada saat itu. Faraday yakin, mesti ada suatu cara penggunaan magnit untuk menggerakkan listrik, dan dia terus-menerus mencari jalan bagaimana menemukan metode itu. Kini, magnit yang tak berpindah-pindah tidak mempengaruhi arus listrik yang berdekatan dengan kawat. Tetapi di tahun 1831, Faraday menemukan bahwa bilamana magnit dilalui lewat sepotong kawat, arus akan mengalir di kawat sedangkan magnit bergerak. Keadaan ini disebut “pengaruh elektro magnetik,” dan penemuan ini disebut “Hukum Faraday” dan pada umumnya dianggap penemuan Faraday yang terpenting dan terbesar.

Ini merupakan penemuan yang monumental, dengan dua alasan. Pertama, “Hukum Faraday” mempunyai arti penting yang mendasar dalam hubungan dengan pengertian teoritis kita tentang elektro magnetik. Kedua, elektro magnetik dapat digunakan untuk menggerakkan secara terus-menerus arus aliran listrik seperti diperagakan sendiri oleh Faraday lewat pembuatan dinamo listrik pertama. Meski generator tenaga pembangkit listrik kita untuk mensuplai kota dan pabrik dewasa ini jauh lebih sempurna ketimbang apa yang diperbuat Faraday, tetapi kesemuanya berdasar pada prinsip serupa dengan pengaruh elektro magnetik.

Faraday juga memberi sumbangan di bidang kimia. Dia membuat rencana mengubah gas jadi cairan, dia menemukan pelbagai jenis kimiawi termasuk benzene. Karya lebih penting lagi adalah usahanya di bidang elektro kimia (penyelidikan tentang akibat kimia terhadap arus listrik). Penyelidikan Faraday dengan ketelitian tinggi menghasilkan dua hukum “elektrolysis” yang penyebutannya dirangkaikan dengan namanya yang merupakan dasar dari elektro kimia. Dia juga mempopulerkan banyak sekali istilah yang digunakan dalam bidang itu seperti: anode, cathode, electrode dan ion.
Dan adalah Faraday jua yang memperkenalkan ke dunia fisika gagasan penting tentang garis magnetik dan garis kekuatan listrik. Dengan penekanan bahwa bukan magnit sendiri melainkan medan diantaranya, dia menolong mempersiapkan jalan untuk pelbagai macam kemajuan di bidang fisika modern, termasuk pernyataan Maxwell tentang persamaan antara dua ekspresi lewat tanda (=) seperti 2x + 5 = 10. Faraday juga menemukan, jika perpaduan dua cahaya dilewatkan melalui bidang magnit, perpaduannya akan mengalami perubahan. Penemuan ini punya makna penting khusus, karena ini merupakan petunjuk pertama bahwa ada hubungan antara cahaya dengan magnit.
Faraday bukan cuma cerdas tetapi juga tampan dan punya gaya sebagai penceramah. Tetapi, dia sederhana, tak ambil peduli dalam hal kemasyhuran, duit dan sanjungan. Dia menolak diberi gelar kebangsawanan dan juga menolak jadi ketua British Royal Society. Hidup perkawinannya panjang dan berbahagia, cuma tak punya anak. Dia tutup usia tahun 1867 di dekat kota London.

<span style=”font-weight:bold;”>JAMES CLERK MAXWELL 1831-1879</span>
Fisikawan Inggris kesohor James Clerk Maxwell ini terkenal melalui formulasi empat pernyataan yang menjelaskan hukum dasar listrik dan magnit.

Kedua bidang ini sebelum Maxwell sudah diselidiki lama sekali dan sudah sama diketahui ada kaitan antar keduanya. Namun, walau pelbagai hukum listrik dan kemagnitan sudah diketemukan dan mengandung kebenaran dalam beberapa segi, sebelum Maxwell, tak ada satu pun dari hukum-hukum itu yang merupakan satu teori terpadu. Dalam dia punya empat perangkat hukum yang dirumuskan secara ringkas (tetapi punya bobot tinggi), Maxwell berhasil menjabarkan secara tepat perilaku dan saling hubungan antara medan listrik dan magnit. Dengan begitu dia mengubah sejumlah besar fenomena menjadi satu teori tunggal yang dapat dijadikan pegangan. Pendapat Maxwell telah jadi anutan pada abad sebelumnya secara luas baik di sektor teori maupun dalam praktek ilmu pengetahuan.

Nilai terpenting dari, pendapat Maxwell yang baru itu adalah: banyak persamaan umum yang bisa terjadi dalam semua keadaan. Semua hukum-hukum listrik dan magnit yang sudah ada sebelumnya dapat dianggap berasal dari pendapat Maxwell, begitu pula sejumlah besar hukum lainnya, yang dulunya merupakan teori yang tidak dikenal. Dari pendapat Maxwell ini dapat diperlihatkan betapa pergoyangan bolak-balik bidang elektromagnetik secara periodik adalah sesuatu hal yang bisa terjadi. Gerak bolak-balik seperti pendulum ini disebut gelombang elektromagnetik, yang bilamana sekali digerakkan akan menyebar terus hingga angkasa luar. Dari pendapat-pendapat ini mampu menunjukkan bahwa kecepatan gelombang elektromagnetik itu mencapai sekitar 300.000 kilometer (186.000 mil) per detik. Maxwell mengetahui bahwa ini sama dengan ukuran kecepatan cahaya. Dari sudut ini dia dengan tepat mengambil kesimpulan bahwa cahaya itu sendiri terdiri dari gelombang elektromagnetik.

Jadi, pendapat Maxwell bukan semata merupakan hukum dasar dari kelistrikan dan kemagnitan, tetapi juga sekaligus merupakan hukum dasar optik. Sesungguhnya, semua hukum terdahulu yang dikenal sebagai hukum optik dapat dikaitkan dengan pendapatnya, juga banyak fakta dan hubungan dengan hal-hal yang dulunya tidak terungkapkan.

Cahaya yang tampak oleh mata bukan semata jenis yang memungkinkan radiasi elektromagnetik. Pendapat Maxwell menunjukkan bahwa gelombang elektromagnetik lain, berbeda dengan cahaya yang tampak oleh mata dalam dia punya panjang gelombang dan frekuensi, bisa saja ada. Kesimpulan teoritis ini secara mengagumkan diperkuat oleh Heinrich Hertz, yang sanggup menghasilkan dan menemui kedua gelombang yang tampak oleh mata yang diramalkan oleh Maxwell itu. Beberapa tahun kemudian Guglielmo Marconi memperagakan bahwa gelombang yang tak terlihat mata itu dapat digunakan buat komunikasi tanpa kawat sehingga menjelmalah apa yang namanya radio itu. Kini, kita gunakan juga buat televisi, sinar X, sinar gamma, sinar infra, sinar ultraviolet adalah contoh-contoh dari radiasi elektromagnetik. Semuanya bisa dipelajari lewat hasil pemikiran Maxwell.

Meski kemasyhuran Maxwell yang paling menonjol terletak pada sumbangan pikirannya yang dahsyat di bidang elektromagnetik dan optik, dia juga memberi sumbangan penting bagi dunia ilmu pengetahuan di segi lain termasuk teori-teori astronomi dan termodinamika (penyelidikan ihwal panas). Salah satu minat khususnya adalah teori kinetik tentang gas. Maxwell menyadari bahwa tidak semua molekul gas bergerak pada kecepatan sama. Sebagian lebih lambat, sebagian lebih cepat, dan sebagian lagi dengan kecepatan yang luar biasa. Maxwell mencoba rumus khusus menunjukkan bagian terkecil molekul bergerak (dalam suhu tertentu) pada kecepatan yang tertentu pula. Rumus ini disebut “penyebaran Maxwell,” merupakan rumus yang paling luas terpakai dalam rumus-rumus ilmiah, dan mengandung makna dan manfaat penting pada tiap cabang fisika.
Maxwell dilahirkan di Edinburgh, Skotlandia, tahun 1831. Dia teramatlah dini berkembang: pada usia lima belas tahun dia sudah mampu mempersembahkan sebuah kertas kerja ilmiah kepada “Edinburgh Royal Society.” Dia masuk Universitas Edinburgh dan tamat Universitas Cambridge. Kawin, tetapi tak beranak. Maxwell umumnya dianggap teoritikus terbesar di bidang fisika dalam seluruh masa antara Newton dan Einstein. Kariernya yang cemerlang berakhir terlampau cepat karena dia meninggal dunia tahun 1879 akibat serangan kanker, tak berapa lama sehabis merayakan ulang tahunnya yang ke-48.

<span style=”font-weight:bold;”>MAX PLANCK 1858-1947
</span>
Bulannya Desember, tahunnya 1900. Dunia ilmu terperanjat dan terlompat dari tempat duduknya. Apa yang terjadi? Seorang ahli fisika Jerman, Max Planck, umumkan dia punya hipotesa yang berani. Dia bilang radiant energi (energi gelombang cahaya) tidaklah mengalir dalam arus yang kontinyu, tetapi terdiri dari potongan-potongan yang disebutnya quanta. Hipotesa Planck yang bertentangan dengan teori klasik tentang cahaya dan elektro magnetik ini merupakan titik mula dari teori kuantum yang sejak itu merevolusionerkan bidang fisika dan menyuguhkan kita pengertian yang lebih mendalam tentang alam benda dan radiasi.

Dilahirkan tahun 1858 di kota Kiel, Jerman, dia belajar di Universitas Berlin dan Munich, peroleh gelar Doktor dalam ilmu fisika dengan summa cum laude dari Universitas Munich selagi berumur baru dua puluh satu tahun. Sebentar dia mengajar di Universitas Munich, kemudian di Universitas Kiel. Di tahun 1889 dia jadi mahaguru Univeristas Berlin sampai pensiunnya tiba tatkala usianya mencapai tujuh puluh. Itu tahun 1928.

Planck, seperti halnya ilmuwan lain, tertarik dengan “radiasi kuantitas gelap,” julukan buat radiasi elektromagnetik dikeluarkan oleh obyek gelap sempurna apabila dipanaskan. (Suatu obyek gelap sempurna dijelaskan sebagai sesuatu yang tidak memantulkan cahaya, tetapi sepenuhnya menyerap semua cahaya yang jatuh di atasnya). Percobaan-percobaan para ahli fisika telah membuat ukuran yang hati-hati perihal radiasi yang dikeluarkan oleh obyek itu bahkan sebelum Planck bekerja dalam masalah itu. Hasil karya Planck pertama adalah penemuannya dalam hal formula secara aljabar yang ruwet yang dengan tepat menggambarkan “radiasi kuantitas gelap.” Formula ini yang kerap digunakan dalam teori fisika sekarang dengan rapi meringkas data-data percobaan. Tetapi ada satu masalah: hukum fisika yang sudah diterima meramalkan adanya suatu formula yang samasekali berbeda.

Planck berkecimpung dalam-dalam terhadap soal ini dan akhirnya tampil dengan teori baru yang radikal: energi radiant cuma keluar pada pergandaan yang tepat dari unit elementer yang disebut Planck “kuantum”. Menurut teori Planck, ukuran kuantum cahaya tergantung pada frekuensi cahaya (misalnya pada warnanya), dan juga berimbang dengan kuantitas fisik yang oleh Planck diringkas dengan “h”, tetapi sekarang disebut “patokan Planck.” Hipotesa Planck amatlah berlawanan dengan apa yang jadi konsep umum fisika. Tetapi, dengan penggunaan ini dia mampu menemukan keaslian teoritis yang tepat daripada formula yang benar tentang “radiasi kuantitas gelap.”
Teori Planck begitu revolusioner, yang tak syak lagi bisa dianggap suatu gagasan eksentrik kalau saja Planck bukan seorang ahli fisika yang mantap dan konservatif. Kendati hipotesanya terdengar aneh, dalam soal khusus ini jelas merupakan penuntun ke arah formula yang benar.

Pada mulanya, umumnya ahli fisika (termasuk Planck sendiri) melihat hipotesanya sebagai tak lain dari sebuah fiksi matematik yang cocok. Sesudah beberapa tahun, hal itu berubah sehingga konsepsi Planck tentang kuantum dapat digunakan untuk pelbagai fenomena fisik selain untuk “radiasi kuantitas gelap.” Einstein menggunakan konsep ini di tahun 1905 dalam rangka menjelaskan efek fotoelektrika, dan Niels Bohr menggunakannya di tahun 1913 dalam teorinya tentang struktur atom. Menjelang tahun 1918 tatkala Planck peroleh Hadiah Nobel, jelaslah sudah bahwa hipotesanya pada dasarnya benar dan itu mempunyai arti penting yang fundamental dalam teori fisika.
Sikap anti Nazi Planck yang keras membuat kedudukannya berabe di masa pemerintahan Hitler. Anak laki-lakinya dihukum mati di awal tahun 1945 akibat peranannya dalam komplotan para perwira yang punya rencana membunuh Hitler. Planck sendiri mati tahun 1947, pada umur delapan puluh sembilan tahun.

Perkembangan mekanika kuantum mungkin yang paling penting dari perkembangan ilmu pengetahuan dalam abad ke-20, lebih penting ketimbang teori relativitas Einstein. Patokan “h” Planck memegang peranan penting dalam teori fisika dan sekarang dihimpun jadi dua atau tiga patokan fisika paling dasar. Patokan itu muncul dalam teori struktur atom, dalam prinsip “ketidakpastian” Heisenberg, dalam teori radiasi dan dalam banyak lagi formula ilmiah. Perkiraan pertama Planck mengenai nilai jumlah adalah dalam batas perhitungan 2% yang diterima sekarang.
Planck umumnya dianggap bapak mekanika kuantum. Kendati dia memainkan peranan tak seberapa dalam perkembangan teori selanjutnya, adalah keliru mengecilkan arti Planck. Jalan mula yang disuguhkannya sungguh penting. Dia membebaskan pikiran orang dari anggapan-anggapan keliru yang ada sebelumnya, dan dia memungkinkan orang-orang sesudahnya menyusun teori yang jauh lebih jernih daripada yang sekarang kita miliki.

<span style=”font-weight:bold;”>NIELS BOHR 1885-1962
</span>
Babi, kodok, trenggiling, manusia, semuanya punya bapak, resmi atau tidak resmi. Begitu juga teori struktur atom pun punya bapak. Dia itu Niels Henrik David Bohr yang lahir tahun 1885 di Kopenhagen. Di tahun 1911 dia raih gelar doktor fisika dari Universitas Copenhagen. Tak lama sesudah itu dia pergi ke Cambridge, Inggris. Di situ dia belajar di bawah asuhan J.J. Thompson, ilmuwan kenamaan yang menemukan elektron. Hanya dalam beberapa bulan sesudah itu Bohr pindah lagi ke Manchester, belajar pada Ernest Rutherford yang beberapa tahun sebelumnya menemukan nucleus (bagian inti) atom. Adalah Rutherford ini yang menegaskan (berbeda dengan pendapat-pendapat sebelumnya) bahwa atom umumnya kosong, dengan bagian pokok yang berat pada tengahnya dan elektron di bagian luarnya. Tak lama sesudah itu Bohr segera mengembangkan teorinya sendiri yang baru serta radikal tentang struktur atom.

Kertas kerja Bohr yang bagaikan membuai sejarah “On the Constitution of Atoms and Molecules,” diterbitkan dalam Philosophical Magazine tahun 1933.
Teori Bohr memperkenalkan atom sebagai sejenis miniatur planit mengitari matahari, dengan elektron-elektron mengelilingi orbitnya sekitar bagian pokok, tetapi dengan perbedaan yang sangat penting: bilamana hukum-hukum fisika klasik mengatakan tentang perputaran orbit dalam segala ukuran, Bohr membuktikan bahwa elektron-elektron dalam sebuah atom hanya dapat berputar dalam orbitnya dalam ukuran spesifik tertentu. Atau dalam kalimat rumusan lain: elektron-elektron yang mengitari bagian pokok berada pada tingkat energi (kulit) tertentu tanpa menyerap atau memancarkan energi. Elektron dapat berpindah dari lapisan dalam ke lapisan luar jika menyerap energi. Sebaliknya, elektron akan berpindah dari lapisan luar ke lapisan lebih dalam dengan memancarkan energi.
Teori Bohr memperkenalkan perbedaan radikal dengan gagasan teori klasik fisika. Beberapa ilmuwan yang penuh imajinasi (seperti Einstein) segera bergegas memuji kertas kerja Bohr sebagai suatu “masterpiece,” suatu kerja besar; meski begitu, banyak ilmuwan lainnya pada mulanya menganggap sepi kebenaran teori baru ini. Percobaan yang paling kritis adalah kemampuan teori Bohr menjelaskan spektrum dari hydrogen atom. Telah lama diketahui bahwa gas hydrogen jika dipanaskan pada tingkat kepanasan tinggi, akan mengeluarkan cahaya. Tetapi, cahaya ini tidaklah mencakup semua warna, tetapi hanya cahaya dari sesuatu frekuensi tertentu. Nilai terbesar dari teori Bohr tentang atom adalah berangkat dari hipotesa sederhana tetapi sanggup menjelaskan dengan ketetapan yang mengagumkan tentang gelombang panjang yang persis dari semua garis spektral (warna) yang dikeluarkan oleh hidrogen. Lebih jauh dari itu, teori Bohr memperkirakan adanya garis spektral tambahan, tidak terlihat pada saat sebelumnya, tetapi kemudian dipastikan oleh para pencoba. Sebagai tambahan, teori Bohr tentang struktur atom menyuguhkan penjelasan pertama yang jelas apa sebab atom punya ukuran seperti adanya. Ditilik dari semua kejadian yang meyakinkan ini, teori Bohr segera diterima, dan di tahun 1922 Bohr dapat,hadiah Nobel untuk bidang fisika.
Tahun 1920 lembaga Fisika Teoritis didirikan di Kopenhagen dan Bohr jadi direkturnya. Di bawah pirnpinannya cepat menarik minat ilmuwan-ilmuwan muda yang brilian dan segera menjadi pusat penyelidikan ilmiah dunia.

Tetapi sementara itu teori struktur atom Bohr menghadapi kesulitan-kesulitan. Masalah terpokok adalah bahwa teori Bohr, meskipun dengan sempurna menjelaskan kesulitan masa depan atom (misalnya hidrogen) yang punya satu elektron, tidak dengan persis memperkirakan spektra dari atom-atom lain. Beberapa ilmuwan, terpukau oleh sukses luar biasa teori Bohr dalam hal memaparkan atom hidrogen, berharap dengan jalan menyempurnakan sedikit teori Bohr, mereka dapat juga menjelaskan spektra atom yang lebih berat. Bohr sendiri merupakan salah seorang pertama yang menyadari penyempurnaan kecil itu tak akan menolong, karena itu yang diperlukan adalah perombakan radikal. Tetapi, bagaimanapun dia mengerahkan segenap akal geniusnya, toh dia tidak mampu memecahkannya.

Pemecahan akhirnya ditemukan oleh Werner Heisenberg dan lain-lainnya, mulai tahun 1925. Adalah menarik untuk dicatat di sini, bahwa Heisenberg –dan umumnya ilmuwan yang mengembangkan teori baru– belajar di Kopenhagen, yang tak syak lagi telah mengambil manfaat yang besar dari diskusi-diskusi dengan Bohr dan saling berhubungan satu sama lain. Bohr sendiri bergegas menuju ide baru itu dan membantu mengembangkannya. Dia membuat sumbangan penting terhadap teori baru, dan liwat disuksi-diskusi dan tulisan-tulisan, dia menolong membikin lebih sistematis.
Tahun 1930-an lebih menunjukkan perhatiannya terhadap permasalahan bagian pokok struktur atom. Dia mengembangkan model penting “tetesan cairan” bagian pokok atom. Dia juga mengajukan masalah teori tentang “kombinasi bagian pokok” dalam reaksi atom untuk dipecahkan. Tambahan pula, Bohr merupakan orang yang dengan cepat menyatakan bahwa isotop uranium yang terlibat dalam pembagian nuklir adalah U235. Pernyataan ini punya makna penting dalam pengembangan berikutnya dari bom atom.

Dalam tahun 1940 balatentara Jerman menduduki Denmark. Ini menempatkan diri Bohr dalam bahaya, sebagian karena dia punya sikap anti Nazi sudah tersebar luas, sebagian karena ibunya seorang Yahudi. Tahun 1943 Bohr lari meninggalkan Denmark yang jadi daerah pendudukan, menuju Swedia. Dia juga menolong sejumlah besar orang Yahudi Denmark melarikan diri agar terhindar dari kematian dalam kamar-kamar gas Hitler. Dari Swedia Bohr lari ke Inggris dan dari sana menyeberang ke Amerika Serikat. Di negeri ini, selama perang berlangsung, Bohr membantu membikin bom atom,
Seusai perang, Bohr kembali kampung ke Denmark dan mengepalai lembaga hingga rohnya melayang tahun 1`562. Dalam tahun-tahun sesudah perang Bohr berusaha keras –walau tak berhasil– mendorong dunia internasional agar mengawasi penggunaan energi atom.
Bohr kawin tahun 1912, di sekitar saat-saat dia melakukan kerja besar di bidang ilmu pengetahuan. Dia punya lima anak, salah seorang bernama Aage Bohr, memenangkan hadiah Nobel untuk bidang fisika di tahun 1975. Bohr merupakan orang yang paling disenangi di dunia ilmuwan, bukan semata-mata karena menghormat ilmunya yang genius, tetapi juga pribadinya dan karakter serta rasa kemanusiaannya yang mendalam.

Kendati teori orisinal Bohr tentang struktur atom sudah berlalu lima puluh tahun yang lampau, dia tetap merupakan salah satu dari tokoh besar di abad ke-20. Ada beberapa alasan mengapa begitu. Pertama, sebagian dari hal-hal penting teorinya masih tetap dianggap benar. Misalnya, gagasannya bahwa atom dapat ada hanya pada tingkat energi yang cermat adalah merupakan bagian tak terpisahkan dari semua teori-teori struktur atom berikutnya. Hal lainnya lagi, gambaran Bohr tentang atom punya arti besar buat menemukan sesuatu untuk diri sendiri, meskipun ilmuwan modern tak menganggap hal itu secara harfiah benar. Yang paling penting dari semuanya itu, mungkin, adalah gagasan Bohr yang merupakan tenaga pendorong bagi perkembangan “teori kuantum.” Meskipun beberapa gagasannya telah kedaluwarsa, namun jelas secara historis teori-teorinya sudah membuktikan merupakan titik tolak teori modern tentang atom dan perkembangan berikutnya bidang mekanika kuantum.

ARCHIMEDES 287 SM-212 SM
Yang namanya ilmuwan itu tentu pintar. Kalau tidak, buat apa disebut ilmuwan? Tetapi Archimedes –menurut ukuran dunia lama– bukan pintar sekedar pintar tetapi paling pintar di bidangnya, bidang matematika. Dia kadangkala dianggap penemu prinsip pengungkit dan konsep gaya berat tertentu.
Tetapi nyatanya pengungkit itu sudah dikenal dan digunakan orang berabad sebelum ada Archimedes. Tampaknya dia orang pertama yang jelas menerangkan formula hal-ihwal pengungkit meskipun insinyur-insinyur mesin sudah berulang kali dan mampu menggunakan pengungkit jauh sebelum Archimedes.

Konsep tentang kepadatan (berat per volume unit) dari sesuatu benda sebagai lawan berat keseluruhan sesuatu obyek tampaknya sudah diketahui sebelum Archimedes dan mahkota (cerita tentang dia melompat dari tempat mandinya dan berlari-lari sepanjang jalan sambil teriak “Eureka”), apa yang ditemukan Archimedes bukanlah barang baru melainkan sekedar pemakaian terang-terangan dari konsep yang sudah dikenal terhadap sesuatu masalah spesifik.
Selaku matematikus, tak syak lagi Archimedes memang terkemuka. Buktinya, dia hampir sampai pada memformulasikan “kalkulus integral,” lebih dari delapan belas abad sebelum Isaac Newton berhasil melaksanakannya. Malangnya, sistem yang mudah untuk melukiskan lambang-lambang jumlah masih kurang di masa Archimedes. Begitu pula malangnya, tak ada pelanjut-pelanjutnya yang cukup bermutu selaku matematikus. Akibatnya, kebrilianan pandangan matematika Archimedes menjadi semakin berkurang daya cekamnya seperti sebelumnya. Karena itu tampak jelas sekali, betapa pun mengagumkan bakat Archimedes, pengaruh riilnya tidak cukup besar untuk meyakinkan dia bisa dimasukkan ke dalam barisan daftar yang seratus.
MARIE CURIE 1867-1934

Nama asalnya: Maria Sklodowska. Marie Curie lebih masyhur dari banyak ilmuwan yang saya masukkan dalam daftar seratus tokoh buku ini. Tetapi, tampak oleh saya, kemasyhurannya tidaklah bertolak dari arti penting ilmiah yang sudah diperbuatnya, tetapi lebih banyak disebabkan karena dia seorang wanita. Kariernya menunjukkan, dalam jenis jenis pekerjaan yang mungkin, seorang wanita sanggup melakukan penyelidikan ilmiah yang punya kualitas tinggi. Atas dasar ini dia menjadi amat gemerlapan, sehingga banyak orang yang punya kesan bahwa dialah orang yang menemukan radioaktif. Tetapi nyatanya radioaktif diketemukan oleh Antoine Henri Becquerel. Tak perlu dipersoalkan lagi bahwa prioritas jatuh pada Becquerel, karena baru sesudah Marie Curie membaca laporan penemuan Becquerel barulah dia dan lakinya, Pierre, yang juga sama-sama ilmuwan berbakat mulai penyelidikan masalah itu.

Yang sesungguhnya hasil karya Marie Curie yang mengesankan adalah penemuan dan pemisahan elemen kimia radium. Sebelum ini, dia sudah menemukan elemen radioaktif lain yang dijulukinya “polonium,” diambil dari nama negeri asalnya, Polandia. Ini memang betul-betul karya yang mengagumkan, tetapi tidaklah mempunyai arti penting yang menonjol dalam teori ilmiah.
Tahun 1903, Marie Curie, Pierre Curie dan Antoine Henri Becquerel secara bersama-sama peroleh Hadiah Nobel untuk bidang fisika. Dan tahun 1911 Marie Curie dapat lagi Hadiah Nobel, kali ini untuk bidang kimia. Ini membuatnya orang pertama yang peroleh Hadiah Nobel dua kali.
Menarik untuk dicatat bahwa Marie Curie punya anak-anak kecil tatkala dia menyelesaikan penyelidikan ilmiah paling pentingnya. Puteri tertuanya, Irene, juga menjadi ilmuwan yang berhasil gemilang. Irene kawin dengan pria yang juga ilmuwan berbakat, Jean Frederic Joliot. Sepasang suami istri itu bersama-sama menemukan radioaktif buatan (artifisial). Untuk penemuan ini (yang bisa dianggap “keturunan” dari penemuan radio-aktif alamiah!) menyebabkan Joliot dan Curie membagi Hadiah Nobel tahun 1935. Puteri kedua Marie Curie, Eve, menjadi musikus terkenal dan pengarang. Betul-betul sebuah keluarga luar biasa!
Share:

10 Fakta Bir

10 Fakta Bir ‘Geeky’, Dijelaskan oleh Ilmu Fisika

Setelah menyelesaikan waktu-waktu sekolah, sering dalam kepala siapapun yang tidak menyukai pelajaran ilmu pasti bertanya-tanya akan dibawa ke mana pengetahuan mereka ini. Untuk apa sih ilmu fisika itu sendiri? Toh, ilmu tersebut memang milik mereka yang suka banget sama angka-angka.
Ternyata, oh, ternyata, jawabannya adalah bir. Ilmu fisika ternyata sangat bermanfaat dalam urusan dunia bir. Nggak percaya? Singkirkan segala prasangka nggak enak terlebih dahulu, ambil kertas catatan, wahai para pecinta bir. Siapa tahu akan ada ulangan di bar pada hari Jum’at malam.
#1. Ketika kamu membuka tutup botol bir, udara yang ada dalam botol secara otomatis lenyap, terkondensasi menjadi sebuah awan-awan uap air kecil.

anigif_original-grid-image-24468-1386157364-7

#2. Bentuk gelas yang kamu pakai untuk minum mempengaruhi rasa birmu.
enhanced-buzz-12381-1385741215-0
Bentuk gelas mempengaruhi bagaimana cara tanganmu menghangatkan suhu bir. Bagian yang paling terpengaruhi akan hal ini bukan lain merupakan rasa dari bir itu sendiri.
Sebuah gelas tebal atau yang memiliki gagang sangat disarankan untuk dipakai meminum bir karena akan melindungi birmu dari suhu panas tubuhmu. Sudah pasti ini berarti bir tersebut akan terjaga temperaturnya. Bir yang terasa enak merupakan bir yang suhunya hampir menyamai suhu ruangan dan di minum dari gelas berbentuk chalice.

#3. Lipstik atau tangan yang berminyak dapat menghentikan pembentukan beer head yang enak.
enhanced-buzz-18413-1386158321-2
Hal ini juga dapat terjadi jika gelas yang kamu pakai dalam keadaan basah.
#4. Oksigen adalah musuh utama birmu.
[youtube https://www.youtube.com/watch?v=lXmggH-sAzk]
Oleh karena itu CO2 ditambahkan dalam masing-masing botol maupun kaleng bir. Jika tidak, oksigen akan membuat bir teroksidasi dan rasanya langsung berubah dengan cepat.
#5. Ada sekitar 2.5 pint CO2 tercampur dalam sebuah pint bir.
enhanced-buzz-28884-1386092796-0

#6. Benggol-benggol yang terletak di bawah kemasan botol bir bertujuan untuk membuat si botol lebih mudah dipindahkan dalam pabrik.
enhanced-buzz-5845-1386092385-52

#7. Para ilmuwan menggunakan teknologi yang sama baik itu untuk memonitor gelembung dalam bir atau memantau gunung berapi.
enhanced-buzz-27308-1386095658-0

#8. Perbedaan suhu ketika membuat bir dapat menghasilkan rasa dan warna yang berbeda drastis di produk akhirnya.
[youtube https://www.youtube.com/watch?v=M4lq5p5mjgo]

#9. Membekukan bir akan membuatnya jauh lebih kuat.
enhanced-buzz-5771-1386160543-2 (1)
Dalam hal rasa dan konten alkohol, tentunya. Inilah yang dilakukan oleh BrewDog untuk membuat bir paling kuat mereka yakni Tactical Nuclear Penguin.

#10. Bir dapat bertahan dari kiamat nuklir.
enhanced-buzz-19869-1386096644-6
Selama Perang Dingin, para ilmuwan menjatuhkan bom nulkir di atas bir dan soda untuk mengetahui bagaimana efeknya bagi dua produk tersebut. Secara mengejutkan, kedua produk minuman tersebut berhasil bertahan. Selama bir tersebut berada dalam jangkauan 380 meter dari tempat pengemboman dan tidak terhantam oleh reruntuhan, bir tersebut aman dikonsumsi.
Share:

Senyum Tanda Cinta

Senyum Tanda Cinta (Puisi Fisika)

Ketika senyum tepat mengarah di fokus hati
hati bervibrasi tanda polikromatik
beresonansi di jiwa
Ferromagetik melekat rasa
Ini bukan semiotik emburto eco
Ini juga bukan fatamorgana
Ini aurora saat gelombang cinta
berinterferensi konstruktif
Walau jarak kita
seperti aphelium
Namun senyumu tetap kekal
tak terbias, tak terfriksi
oleh ruang dan waktu
Share:

Aku dan Kamu

Aku dan Kamu (Hukum Fisika = Cinta!)

Masih banyak yang lebih indah daripada pelangi diatas langit, masih ada celah untuk keluar dari ruangan yang sempit, walaupun Aku hanya dapat berbuat sedikit, tapi Aku akan terus mengulang kembali agar Aku tak lagi terhimpit...

Aku tak bisa begini! Siapa Aku bagimu? Apakah Aku hanyalah sebuah angin yang hanya dapat Kau rasakan saja, tentu saja tidak! Mungkin Kau bisa tahu bahwa Aku ada, tapi Kau tak pernah tau bagaimana Aku yang sebenarnya. Itulah sebabnya mengapa Aku sendiri, karena disetiap kali Aku datang, Kau tak pernah melihatnya. Apakah Kau pernah sadari itu? Mungkin, Sedikitpun tidak! Aku tau semuanya karena Aku sering membaca pikiranmu, Aku tau semuanya tentangmu, tetapi bisa saja Aku salah menafsirkan itu, meskipun terkadang berada jauh dari batas kewajaranku, Aku tetap melakukannya berulang-ulang, sedikit berinteraksi pada waktu yang terkenang, dan kemudian Aku tuangkan pada tulisan-tulisan dibuku yang Aku bawa pulang. Simple, (F aksi = -F reaksi) dan Aku mempercayai itu, Kau paham? Bagiku disetiap kali Aku melakukan sesuatu, meskipun itu sedikit, pastilah ada timbal baliknya, ada reaksi didalam setiap hal yang Aku lakukan. Apakah Kau mempercayainya? 

Seperti Hukum Newton, Diriku adalah sebuah benda didalamnya.
(Hukum gerak Newton adalah Hukum yang menggambarkan hubungan antara gaya yang bekerja pada suatu benda dan gerak yang disebabkannya).
Diriku adalah suatu benda yang bergerak karena suatu gaya yang terjadi, dan Kau adalah gerak yang disebabkanya. Itu artinya Aku adalah F aksi dan Kau adalah -F reaksi. Aku mencoba terus memahami semuanya, Aku kaitkan pada sebuah rumus dan hukum fisika. Sebenarnya Aku tak begitu paham tentang fisika, namun Aku mencoba untuk mengkaitkanya. Ya, setidaknya Aku mencoba meskipun tak sesuai dengan apa yang ada.

( Hukum Newton I : setiap benda akan memiliki kecepatan yang konstan kecuali ada gaya yang resultannya tidak nol bekerja pada benda tersebut. Berarti jika resultan gaya nol, maka pusat massa dari suatu benda tetap diam, atau bergerak dengan kecepatan konstan (tidak mengalami percepatan). Hal ini berlaku jika dilihat dari kerangka acuan inersial ).
 
Aku terus pahami Hukum Newton I , dan Aku selalu bertanya pada diriku sendiri, apakah memang benar semua yang telah tertulis pada Hukum Newton, Aku terus memahaminya. Dan setelah Aku memahami berulangkali, Bagiku semuanya benar! Karena setiap kali Aku berbuat untuk sesuatu hal yang kau suka, dan Aku melakukan dengan kecepatan konstan dan konsisten, tetap berada dalam jalurnya tanpa berubah-ubah, maka reaksimu adalah bahagia. Dan jika mungkin Aku diam pada saat kau menginginkan sesuatu, kau pun akan terdiam dan tak berkerja / tak merespon. Karena jika gaya yang diberikan tidak ada, maka benda yang akan mendapat gayapun tetap diam. Ya, Semuanya Aku pahami! Semuanya harus tetap pada Kecepatan konstan, secara terus menerus tanpa berubah sedikitpun. Maka yang terjadi adalah reaksi timbal balik yang sama. Jika Aku bergerak maka kaupun bergerak, jika Aku terdiam, maka kaupun terdiam. Mungkin seperti ((Aku + Kau) = ( Raga + Jiwa) = (Hidup)). Semuanya berkerja ketika saling melengkapi satu sama lain. Berarti, apa yang Aku lakukan adalah apa yang Kau lakukan.

( Hukum Newton II : sebuah benda dengan massa (M) mengalami gaya resultan sebesar (F) akan mengalami percepatan (a) yang arahnya sama dengan arah gaya, dan besarnya berbanding lurus terhadap (F) dan berbanding terbalik terhadap (M) atau (F) = (Ma). Bisa juga diartikan resultan gaya yang bekerja pada suatu benda sama dengan turunan dari momentum linear benda tersebut terhadap waktu ).
 
Kau pahami Hukum Newton II, kau bisa mengartikanya dengan sebuah cinta? Lakukanlah, Akupun juga ingin Kau tau bahwa Aku memang benar mencintaimu. Seperti Hukum Newton II diatas, Aku (benda) memiliki sebuah perasaan (Massa/M) yang kemudian mengalami gaya sebesar merasakan Cinta (F). Semakin hari, Aku selalu mencintaimu dengan dimensi yang berbeda, selalu mengalami kenaikan, semakin cinta dan semakin cinta (a), Aku memiliki usaha untuk selalu mencintaimu dengan arah sama pada saat Aku merasakan cinta. Aku mencintaimu dengan sepenuh hati, dan bahkan takut kehilanganmu. Apa yang Kamu rasakan (F), sama seperti apa yang Aku rasakan, dan berbanding terbalik (M).  Mungkin juga,  perasaan cinta yang Aku miliki dan kamu miliki (F) = (Ma) yang berbanding terbalik dan mengalami percepatan antara apa yang Aku rasakan dan apa yang Kau rasakan. Dan apa yang Aku telah lakukan selama ini untukmu, semuanya sama dengan apa yang kamu lakukan untukku, dalam setiap waktunya.

Hukum Newton II : Perubahan dari gerak selalu berbanding lurus terhadap gaya yang dihasilkan / bekerja, dan memiliki arah yang sama dengan garis normal dari titik singgung gaya dan benda.

Sebenarnya, Aku tak memaksamu untuk mencintaiku, hanya saja Aku memakai Hukum Newton, sehingga apa yang Aku lakukan untukmu, mau tidak mau Kau harus meresponya!
Menurutku : Hukum Newton jika diterapkan pada (Cinta) yang dianggap sebagai partikel, dalam evaluasi pergerakan misalnya, panjang/ besarnya (cinta) tidak dihiraukan, karena obyek yang dihitung dapat dianggap kecil, relatif terhadap jarak yang ditempuh. Perubahan bentuk ( deformasi ) dan rotasi dari suatu obyek juga tidak diperhitungkan dalam analisisnya. Maka sebuah (Hati) dapat dianggap sebagai suatu titik atau partikel untuk dianalisa (detaknya) pada saat merasakan sebuah (Cinta).

Aku sering kali memikirkan yang sebenarnya tak perlu Aku pikirkan, akan tetapi entah mengapa yang terjadi adalah sebuah pemikiran dengan perasaan yang datang secara tak terduga, secara tiba-tiba dan terus-menerus. Kemudian Aku tulis saja semuanya untukmu, untuk semua yang telah terjadi pada hidupku, Aku mendengarkanya dalam suatu ruangan yang senyap dan Aku sendiri, seperti suatu ketenangan didalam batin yang kemudian Aku meresapi. Setelah Aku mengetahui bahwa semua memang benar berarti untukku, sejak itulah Aku mulai merancang sebuah harapan kecil yang Aku harap suatu saat nanti berarti besar. Karena Aku paham, bahwa semakin kedepan hidupku semakin berat, meskipun terkadang Aku tersesat, Aku akan selalu berusaha mencari jalan keluar meskipun didalam ruangan yang gelap dan pekat. 

Apakah kau akan tetap disini untuk menemaniku dengan sebuah cinta? Mungkin saja tidak! Karena Akupun tahu suatu saat kau pasti akan meninggalkanku. Untuk selamanya, tanpa adanya sebuah cinta, Kau tak lagi ada, dan semuanya hanya tersisa sebuah kenangan kita bersama.
Semenjak Aku mengenalmu, Aku tau bahwa yang sebenarnya berarti adalah sebuah perjuangan. Berusaha untuk saling menjaga, berusaha untuk saling ada, berusaha untuk tetap cinta dan semua! Apapun itu, semuanya sangat bermakna sempurna. Bahkan, saat Aku menatapmu, tak mampu sedikitpun Aku berkedip, mata ini seperti telah kaku dan terselip. Semakin berusaha Aku untuk memejamkan mata, semakin berat pula Aku meninggalkanya.

(Hukum Newton III : gaya aksi dan reaksi dari dua benda memiliki besar yang sama, dengan arah terbalik, dan segaris. Artinya jika ada benda A yang memberi gaya sebesar F pada benda B, maka benda B akan memberi gaya sebesar –F kepada benda A. F dan –F memiliki besar yang sama namun arahnya berbeda. Hukum ini juga terkenal sebagai hukum aksi-reaksi, dengan F disebut sebagai aksi dan –F adalah reaksinya)

Kau tau artinya? Coba kau pahami dan samakan dengan sebuah cinta.
Hukum Newton III : Untuk setiap aksi selalu ada reaksi yang sama besar dan berlawanan arah atau gaya dari dua benda pada satu sama lain selalu sama besar dan berlawanan arah.
Intinya dari hukum Newton III adalah bahwa setiap Aku merasakan cinta dan juga Kau, meskipun terkadang berlawanan, namun keduanya memiliki rasa yang sama besar. Meskipun arahnya berbeda, namun gaya dari keduanya selalu sama.

Aku bermimpi dalam tidurku, membuat sebuah momentum yang kemudian di saat Aku terbangun dari tempat tidurku, Aku masih mengingatnya. Seburuk apapun sebuah mimpi, tetap saja semuanya akan menjadi bayangan yang terekam dalam otak sebelah kiri. Apa kau akan paham? Aku tak tau! Karena Aku tak pernah menuntut Kau untuk mencintaiku, dan Kau sendiri yang secara spontanitas memiliki perasaan yang sama seperti apa yang Aku rasa. Karena cinta tak dapat dipaksa!

Benda apapun yang menekan atau menarik benda lain pasti mengalami tekanan atau tarikan yang sama dari benda yang ditekan atau ditarik. Kalau anda menekan sebuah batu dengan jari anda, jari anda juga ditekan oleh batu. Jika seekor kuda menarik sebuah batu dengan menggunakan tali, maka kuda tersebut juga "tertarik" ke arah batu dengan tali yang digunakan, dan juga akan menarik sang kuda ke arah batu sebesar ia menarik sang batu ke arah kuda.

Semua ini menjelaskan bahwa semua gaya adalah interaksi antara benda-benda yang berbeda, maka tidak ada gaya yang bekerja hanya pada satu benda. Jika Aku mencintaimu, dan juga Kau, maka secara bersamaan kita akan merasakan cinta  dengan besar yang sama padaKu atau padamu dan keduanya segaris. Seperti yang ditunjukan di diagram, para peluncur es (Ice skater) memberikan gaya satu sama lain dengan besar yang sama, tapi arah yang berlawanan. Walaupun gaya yang diberikan sama, percepatan yang terjadi tidak sama. Peluncur yang massanya lebih kecil akan mendapat percepatan yang lebih besar. Dua gaya yang bekerja ini adalah gaya yang bertipe sama. Misalnya antara roda dengan jalan yang sama-sama memberikan gaya gesek.
Secara sederhananya, sebuah gaya cinta bekerja pada sepasang hati, dan tidak pernah hanya pada sebuah hati saja. Jadi untuk setiap gaya selalu memiliki dua ujung. Setiap ujung gaya ini sama kecuali arahnya yang berlawanan. Atau sebuah ujung gaya adalah cerminan dari ujung lainnya. Secara matematis, Cinta ini berupa persamaan vektor satu dimensi, yang bisa dituliskan.

Rasakanlah Cinta bukan pada awalnya saja,
Setelah kau punya, selanjutnya dan seterusnya kau jaga.
Resapilah makna bukan pada saat kau tau saja,
Setelah kau bisa, lakukanlah selamanya.
Terimalah kekurangan salah satunya,
Setelah kau mampu, maka semuanya akan bahagia.
Dan pada intinya, Aku ingin kau selalu bergerak, merasakan, memberi dan menjaga dengan dimensi yang sama seperti apa yang Aku rasa.
Share:

Surat Cinta Versi Fisika


Mau Tahu Jika Anak Fisika Bikin Surat Cinta? Begini Nih Isinya


                                                                    Surat Cinta Versi Fisika
Semenjak bertemu denganmu, energi statik benih cintamu telah mengejutkan gaya pegas jantungku. Sehingga jantungku berdetak tak beraturan bagaikan gelombang bunyi gendang yang tak beraturan.
Saat aku berada beberapa meter darimu, refleksi cahaya cintamu telah membunuh urat mataku sehingga membiaskan bayangan wajahmu yang selalu di otakku.
Pacaran radiasi pesonamu membuat otakku tidak bisa berpikir rasional, sehingga elektromagnet dalam hatiku terpengaruh gelombang magnet cintamu.
Sejak saat itu, atom-atom penyusun cinta ini kian mengumpul karena gaya listrik statik dan energi potensial hatiku.
Saat jauh darimu partikel-partikel cintaku tak bisa diam sehingga melakukan tumbukan-tumbukan lenting sempurna dan menghasilkan energi rindu dengan rumus E=MC2,
yang mana M adalah Masa waktu di mana semakin lama semakin jauh darimu.
Maka energi rinduku semakin bertambah besasr sedangkan C adalah cintaku padamu yang berbanding lurus dengan energi rinduku.
Usaha untuk memberikan gaya Lorenzt-ku padamu telah kuberikan dengan FL= i B Sin QQ.

Mudah-mudahan dengan penurunan rumus cintaku padamu, dapat memahami pemuaian cintaku padamu dan peningkatan massa jenis cintaku.
Agar tekanan cinta dalam hatiku bisa setimbang setalah reaksi dengan cahaya cintamu, dimana bila FL adalah gaya cintaku padamu akan berbanding lurus dengan i (arus listrik cintaku) dan B  adalah besarnya medan magnet dalam hatiku dan arah sudut refleksi cinta dengan SIN.
I    Interistiktik / Intensitas
L   Listrik
O  Optik
V   Kecepatan
E    Energi
U    Usaha :D  J   :P  :*
Share:

Music

Rating Bintang

Description:
Rating: 4.5
Reviewer:
ItemReviewed:

Cursor

Batman Begins - Diagonal Resize 2

Kalender

Jam Analog

BTemplates.com

Wikipedia

Hasil penelusuran

Recent Posts

Business

Editors Picks

Follow us

Recent Posts

Technology

Sports

Link List

Formulir Kontak

Nama

Email *

Pesan *

Followers

Technology

Follow Me

Breaking News

Translate

Nature

Comments

Flickr Images

Entertainment

Fun & Fashion

Most Trending

Popular Posts